VITAMIN B6 AS A YEAST NUTRILITE

In corroboration of the findings of Schultz, Atkin and Frey [THIS JOURNAL 61, 1931 (1939)], we wish to indicate that we have independently found that vitamin B_6 is effective in yeast growth stimulation. A typical experiment is outlined below.

The basal medium was similar to that used in previous work [Williams and Saunders, *Biochem*. J., **28**, 1887 (1934)], but contained 0.1 g. of aspartic acid per liter instead of asparagin. It also contained 0.03 mg. of thiamine, 0.3 mg. of β -alanine, and 30 mg. of autolyzed liver extract per liter. The liver extract had been treated with charcoal and with fuller's earth. The yeast seeding was 0.03 mg. of a pure culture isolated from a Fleischmann cake per 12 ml. culture and the growth period was fourteen hours at 30°. The vitamin B₆ used had been generously furnished by Dr. Samuel Lepkovsky.

TABLE	Т

Effect of Vitamin	\mathbf{B}_{6} on Yeast Growth
Vitamin B ₆ added (γ per culture)	Yeast crop (mg. per 12 ml. culture)
0	4.47
0	4.53
0.0005	4.44
. 001	4.95
.005	6.29
.01	6.82
. 05	8.01
.1	8.58
. 5	7.94
1	8.27

This finding makes more emphatic the close relationship between "B" vitamins and substances effective for the stimulation of the growth of yeasts (as well as other microörganisms).

DEPT. OF CHEMISTRY OREGON STATE COLLEGE CORVALLIS, OREGON	Robert E. Eakin Roger J. Williams
RECEIVED JUNE	: 10, 1939

VITAMIN K ACTIVITY OF SOME QUINONES Sir:

In view of the recent note of Almquist and Klose [THIS JOURNAL, 61, 1611 (1939)] and their conclusion "that phthiocol is the simplest member of an homologous series of anti-hemorrhagic substances," we are submitting a report on the potencies of a rather extensive series of quinones. As soon as our investigations on vitamin K indicated a quinone structure [THIS JOURNAL, **61**, 1295 (1939)], we began a survey of the potencies of quinones.

Using the assay procedure previously described [J. Soc. Exp. Biol. Med., 40, 478 (1939); 41, 199 (1939)] the following quinones were found to be inactive at a level of 5 mg.: anthraquinone β -sulfonic acid, thymoquinone, tolu-p-quinone, di-hydro-anthraquinone diacetate, 1,2-naphthoquinone, phenanthraquinone, diamylhydroquinone, p-xyloquinone, 2-allyl-1,4-naphthoquinone (tested only at 2.0 mg.) and 1,4-benzoquinone.

With the exception of 2-allyl-1,4-naphthoquinone all of the derivatives of 1,4-naphthoquinone show vitamin K activity. Moreover, the diacetates of two of the dihydro-1,4-naphthoquinones show activity, perhaps due to hydrolysis in the gastro-intestinal tract. 2-Allyl-4-amino-1-naphthol hydrochloride in aqueous solution gives a positive reaction.

Our data are summarized in Table I. They show that the 2-methyl-1,4-naphthoquinone is the most active compound in this group; however, when compared with the natural vitamin K_1 (1000 units per mg.) or K_2 (660 units per mg.), the activity is relatively insignificant. Other more complex derivatives of 1,4-naphthoquinone are being prepared for a study of their physiological activity.

TABLE I		
Active compounds	Our standard units per milligram	
1,4-Naphthoquinone	1.0	
2-Methyl-1,4-naphthoquinone	10.0	
2-Ethyl-1,4-naphthoquinone	8.0	
Phthiocol, 2-methyl-3-hydroxynaphtho-		
quinone	2.0	
2-Bromo-3-methyl-1,4-naphthoquinone	> 0.10	
2,3 - Dibromo - 2 - methyl - 1,4 - dioxo-		
tetrahydronaphthalene	> 0.10	
1,4-Naphthalenediol diacetate	0.50	
2-Methyl-1,4-naphthalenediol diacetate	5.00	

Our discovery of the activity of 1,4-naphthoquinones and the inactivity of other quinones has been of considerable assistance in developing the structure of vitamin K_1 [THIS JOURNAL, **61**, 1928 (1939)].

BIOCHEMISTRY DEPARTMENT	S. A. THAYER
SCHOOL OF MEDICINE	L. C. Cheney
SAINT LOUIS UNIVERSITY	S. B. BINKLEY
Saint Louis, Missouri	D. W. MACCORQUODALE
	E. A. Doisy
D	10 1000

RECEIVED JUNE 19, 1939

Sir: